

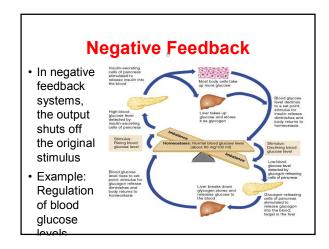
ENDOCRINE SYSTEM

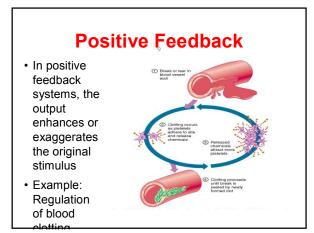
- Endocrine system the body's second great controlling system which influences metabolic activities of cells by means of hormones
- Endocrine glands pituitary, thyroid, parathyroid, adrenal, pineal, and thymus glands
- The pancreas and gonads produce both hormones and exocrine products
- The hypothalamus has both neural functions and releases hormones

Hormones

- Hormones chemical substances secreted by cells into the extracellular fluids
 - -Regulate the metabolic function of other cells
 - Have lag times ranging from seconds to hours
 - -Tend to have prolonged effects
 - -Are classified as amino acid-based hormones, or steroids
- Eicosanoids --- biologically active lipids

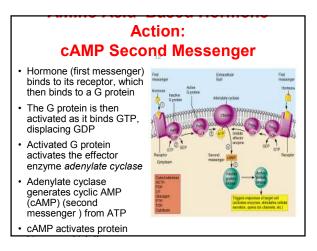

Types of Hormones


- Amino acid–based most hormones belong to this class, including:
 - -Amines, thyroxine, peptide, and protein hormones
- Steroids gonadal and adrenocortical hormones
- Eicosanoids leukotrienes and


Tuesday, October 19, 2010

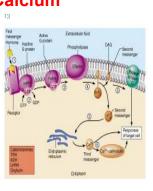
Hormone Action

- Hormones alter cell activity by one of two mechanisms
- -Second messengers involving:
 - Regulatory G proteins
 - Amino acid–based hormones
- -Direct gene activation involving steroid hormones
- The precise response depends on the type of the target cell



Mechanism of Action of Hormones		
Cell surface receptors (plasma membrane)	Proteins and peptides, catecholamines and eicosanoids	Generation of second messengers which alter the activity of other molecules - usually enzymes - within the cell
Intracellular receptors (cytoplasm and/or nucleus)	Steroids and thyroid hormones	Alter transcriptional activity of responsive genes
Tuesday, October 19, 2010		10

MECHANISM OF HORMONE ACTION


ober 19 2010

- Hormones produce one or more of the following cellular changes
 - -Alter plasma membrane permeability
 - Stimulate protein synthesis
 - -Activate or deactivate enzyme systems
 - Induce secretory activity
 - -Stimulate mitosis

Action: PIP–Calcium

- Hormone binds to the receptor and activates G protein
- G protein binds and activates a phospholipase enzyme
- Phospholipase splits the phospholipid PIP₂ into diacylglycerol (DAG) and IP₃ (both act as second messengers)
- DAG activates protein kinases; IP₃ triggers release of Ca²⁺ stores

Hormones with Cell Surface Receptors Protein kinase Epinephrine and norepinephrine, glucagon, luteinizing activity hormone, follicle stimulating hormone, thyroid-stimulating hormone, calcitonin, parathyroid hormone, antidiuretic hormone Protein kinase Insulin, growth hormone, prolactin, oxytocin, activity erythropoietin, several growth factors Calcium and/or Epinephrine and norepinephrine, angiotensin II, antidiuretic hormone, gonadotropin-releasing hormone, thyroid-releasing hormone. phosphoinositides Cyclic GMP Atrial naturetic hormone, nitric oxide Tuesday, October 19, 2010

Steroid Hormones

- Steroid hormones and thyroid hormone diffuse easily into their target cells
- Once inside, they bind and activate a specific intracellular receptor
- The hormone-receptor complex travels to the nucleus and binds a DNA-associated receptor protein
- This interaction prompts DNA transcription to produce mRNA

Hormone-Target Cell Specificity

- Hormones circulate to all tissues but only activate cells referred to as *target cells*
- Target cells must have specific receptors to which the hormone binds
- These receptors may be intracellular or located on the plasma membrane
- Examples of hormone activity
 - ACTH receptors are only found on certain cells of the adrenal cortex

- Thyroxin receptors are found on nearly all cells of

TARGET CELL ACTIVATION

- Target cell activation depends upon three factors
 - Blood levels of the hormone
 - Relative number of receptors on the target cell
 - The affinity of those receptors for the hormone
- Up-regulation target cells form more receptors in response to the hormone
- Down-regulation target cells lose receptors in response to the hormone

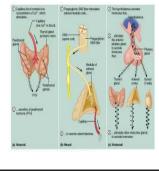
Hormone Concentrations in the Blood

- Concentrations of circulating hormone reflect:
 - -Rate of release
 - Speed of inactivation and removal from the body
- Hormones are removed from the blood by:
 - Degrading enzymes
 - -The kidneys
 - -Liver enzyme systems

CONTROL OF HORMONE SYNTHESIS AND RELEASE

- Blood levels of hormones:
 - Are controlled by negative feedback systems
 - Vary only within a narrow desirable range
- · Hormones are synthesized and released in response to:
 - Humoral stimuli
 - Neural stimuli
 - Hormonal stimuli

Humoral Stimuli • Humoral stimuli secretion of hormones in direct response to changing blood levels of ions and nutrients Example: concentration of calcium ions in the blood Declining blood Ca²⁺ concentration stimulates the arathyroid glands to


Neural Stimuli

- · Humoral stimuli secretion of hormones in direct response to changing blood levels of ions and nutrients
- · Example: concentration of calcium ions in the blood
 - Declining blood Ca²⁺ concentration stimulates the parathyroid glands to secrete PTH (parathyroid hormone) PTH causes Ca2+

ober 19, 2010

Hormonal Stimuli

- Hormonal stimuli release of hormones in response to hormones produced by other endocrine organs
 - The hypothalamic hormones stimulate the anterior pituitary
- In turn, pituitary hormones stimulate
- targets to secrete still

Nervous System Modulation • The nervous system modifies the stimulation of endocrine glands and their negative feedback mechanisms • The nervous system can override normal endocrine controls -For example, control of blood glucose levels · Normally the endocrine system maintains blood glucose

- · Under stress, the body needs more glucose
- The hypothalamus and the sympathetic nervous system are activated to supply ample glucose

Tuesday, October 10, 2010