ENDOCRINE SYSTEM

- Endocrine system – the body’s second great controlling system which influences metabolic activities of cells by means of hormones
- Endocrine glands – pituitary, thyroid, parathyroid, adrenal, pineal, and thymus glands
- The pancreas and gonads produce both hormones and exocrine products
- The hypothalamus has both neural functions and releases hormones

Location of the Major Endocrine Glands

- The major endocrine glands include:
 - Pineal gland, hypothalamus, and pituitary
 - Thyroid, parathyroid, and thymus
 - Adrenal glands and pancreas
 - Gonads – male testes and female ovaries

Hormones

- **Hormones** – chemical substances secreted by cells into the extracellular fluids
 - Regulate the metabolic function of other cells
 - Have lag times ranging from seconds to hours
 - Tend to have prolonged effects
 - Are classified as amino acid-based hormones, or steroids
 - Eicosanoids – biologically active lipids

Types of Hormones

- Amino acid–based – most hormones belong to this class, including:
 - Amines, thyroxine, peptide, and protein hormones
- Steroids – gonadal and adrenocortical hormones
- Eicosanoids – leukotrienes and prostaglandins

Hormone Action

- Hormones alter cell activity by one of two mechanisms
 - Second messengers involving:
 - Regulatory G proteins
 - Amino acid–based hormones
 - Direct gene activation involving steroid hormones
- The precise response depends on the type of the target cell
Homeostatic Control Mechanisms

Negative Feedback
- In negative feedback systems, the output shuts off the original stimulus
- Example: Regulation of blood glucose levels

Positive Feedback
- In positive feedback systems, the output enhances or exaggerates the original stimulus
- Example: Regulation of blood clotting

Mechanism of Action of Hormones

MECHANISM OF HORMONE ACTION
- Hormones produce one or more of the following cellular changes
 - Alter plasma membrane permeability
 - Stimulate protein synthesis
 - Activate or deactivate enzyme systems
 - Induce secretory activity
 - Stimulate mitosis

Action: cAMP Second Messenger
- Hormone (first messenger) binds to its receptor, which then binds to a G protein
- The G protein is then activated as it binds GTP, displacing GDP
- Activated G protein activates the effector enzyme adenylyl cyclase
- Adenylyl cyclase generates cyclic AMP (cAMP) (second messenger) from ATP
- cAMP activates protein
Action:

PIP–Calcium

- Hormone binds to the receptor and activates G protein
- G protein binds and activates a phospholipase enzyme
- Phospholipase splits the phospholipid PIP$_2$ into diacylglycerol (DAG) and IP$_3$ (both act as second messengers)
- DAG activates protein kinases; IP$_3$ triggers release of Ca$^{2+}$ stores

Hormones with Cell Surface Receptors

<table>
<thead>
<tr>
<th>Second</th>
<th>Examples of Hormones Which Utilize This System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein kinase activity</td>
<td>Epinephrine and norepinephrine, glucagon, luteinizing hormone, follicle-stimulating hormone, thyroid-stimulating hormone, calcitonin, parathyroid hormone, antidiuretic hormone</td>
</tr>
<tr>
<td>Protein kinase activity</td>
<td>Insulin, growth hormone, prolactin, oxytocin, erythropoietin, several growth factors</td>
</tr>
<tr>
<td>Calcium and/or phosphoinositides</td>
<td>Epinephrine and norepinephrine, angiotensin II, antidiuretic hormone, gonadotropin-releasing hormone, thyroid-releasing hormone</td>
</tr>
<tr>
<td>Cyclic GMP</td>
<td>Atrial natriuretic hormone, nitric oxide</td>
</tr>
</tbody>
</table>

Steroid Hormones

- Steroid hormones and thyroid hormone diffuse easily into their target cells
- Once inside, they bind and activate a specific intracellular receptor
- The hormone-receptor complex travels to the nucleus and binds a DNA-associated receptor protein
- This interaction prompts DNA transcription to produce mRNA

Hormone–Target Cell Specificity

- Hormones circulate to all tissues but only activate cells referred to as target cells
- Target cells must have specific receptors to which the hormone binds
- These receptors may be intracellular or located on the plasma membrane
- Examples of hormone activity
 - ACTH receptors are only found on certain cells of the adrenal cortex
 - Thyroxin receptors are found on nearly all cells of the body

Hormone Concentrations in the Blood

- Concentrations of circulating hormone reflect:
 - Rate of release
 - Speed of inactivation and removal from the body
- Hormones are removed from the blood by:
 - Degrading enzymes
 - The kidneys
 - Liver enzyme systems
CONTROL OF HORMONE SYNTHESIS AND RELEASE

- Blood levels of hormones:
 - Are controlled by negative feedback systems
 - Vary only within a narrow desirable range
- Hormones are synthesized and released in response to:
 - Humoral stimuli
 - Neural stimuli
 - Hormonal stimuli

Humoral Stimuli

- Humoral stimuli – secretion of hormones in direct response to changing blood levels of ions and nutrients
- Example: concentration of calcium ions in the blood
 - Declining blood Ca²⁺ concentration stimulates the parathyroid glands to secrete PTH (parathyroid hormone)
 - PTH causes Ca²⁺

Neural Stimuli

- Humoral stimuli – secretion of hormones in direct response to changing blood levels of ions and nutrients
- Example: concentration of calcium ions in the blood
 - Declining blood Ca²⁺ concentration stimulates the parathyroid glands to secrete PTH (parathyroid hormone)
 - PTH causes Ca²⁺

Hormonal Stimuli

- Hormonal stimuli – release of hormones in response to hormones produced by other endocrine organs
 - The hypothalamic hormones stimulate the anterior pituitary
 - In turn, pituitary hormones stimulate targets to secrete still

Nervous System Modulation

- The nervous system modifies the stimulation of endocrine glands and their negative feedback mechanisms
- The nervous system can override normal endocrine controls
 - For example, control of blood glucose levels
 - Normally the endocrine system maintains blood glucose
 - Under stress, the body needs more glucose
 - The hypothalamus and the sympathetic nervous system are activated to supply ample glucose